# A data storage for generic and heterogenous scientific data

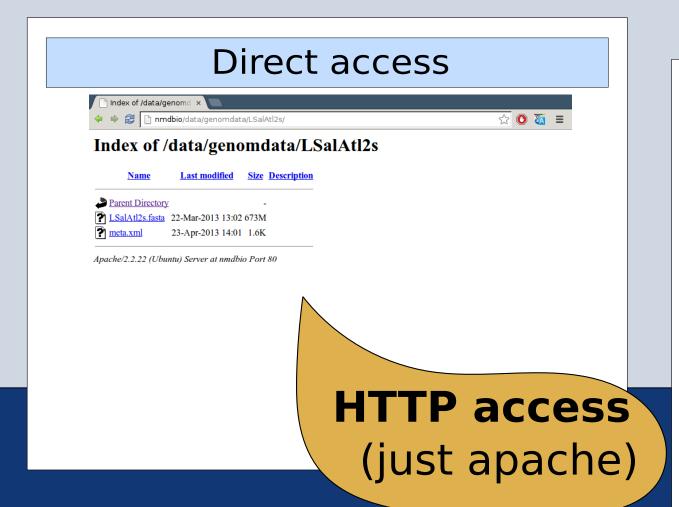
Ketil Malde, Tomasz Furmanek, and Esmael Hassen

### Data Submission

### Is simple and easy

Uses domain specific file formats Auto-generates most metadata Free-text descriptions/ (almost) no mandatory fields

#### Provenance and links


Unique, persistent IDs (citation) Link datasets



### Search/services

### Self-contained services

Technology-agnostic (i.e. use any relational database system) Extract and index only relevant data from data store Independent and modular



### Data Access

### File-based storage

Access through HTTP, FTP, rsync, bittorrent....

Easy replication

Search service

keyword from <species> tag

link to data set

### Domain-specific formats

Easy for domain experts
No data conversion

### Provenance

Identify origins of data

### Generic

search service scans and indexes *metadata* only

# Specialized search service scans relevant data, ignores rest

### specialized services

visualization downloads search

replication

validation

data set data set data set data set

External data repository

### generic file storage

### Metadata

#### XML format

automatic validation tagging (TSN, geoloc, etc) free text descriptions

#### Directory listings

Checksums for integrity File type tagging

### Data set relationships

Obsolescense and replacement Dependencies
Aggregation and extraction

### Extensibility

### New data types

Technology advances means frequent new data types
Adding a new data type is a two minute operation

### New technologies

Services are independent, can use different technologies

Easy integration of off-the-shelf products

## Separation of concerns

Separate roles with separate skill sets

### **System Admin**

data copying replication, extraction, maintenance of services

### Data Manager metadata analysis,

service design

#### **Domain expert**

analyze data, provide relevant metadata, submit results





